ivenoufia University
Final Exam
Faculty of Engineering, Shebin El Kom
Electrical Engineering Department
Course: Automatic Control Systems

Time: 3 Hours
Code: ELE313
Marks: 100
Date: 18/01/2016

ANSWER ALL THE FOLLOWING QUESTIONS

Q1:

[15 Marks]
For the three control systems shown;
a) Put the suitable signs on the detecting points.
b) Determine $\boldsymbol{C}_{(s)} / \boldsymbol{R}_{(s)}$ by two different methods.
i)

ii)

iii)

Q2:

[15 Marks]
a) Give a brief explanation on the following;

LVDT, Tachometer and Operational amplifier.
b) Consider the unity feed-back control system whose,

$$
\frac{C_{(S)}}{R}=\frac{k(1+5 S)}{S^{4}+2 S^{3}+7 S^{2}+5 k S+k}
$$

Determine the value of \boldsymbol{k} if $\boldsymbol{e}_{\boldsymbol{s s}}=\mathbf{0 . 2}$, when the system is subjected to unit step acceleration input signal.
c) Consider the system shown,

If $\boldsymbol{\mu}_{\mathrm{p}}=20 \%$ and $\boldsymbol{t}_{p}=1 \mathrm{sec}$, determine the valueof $\boldsymbol{k}_{\mathbf{1}}$ and $\boldsymbol{k}_{\mathbf{2}}$.

Q3:

The characteristic equations of the control systems are shown;

$$
\begin{aligned}
& S^{5}-S^{4}+4 S^{3}+5 S^{2}+2 S+1=0 \\
& S^{5}-S^{4}-4 S^{3}-5 S^{2}+2 S+1=0 \\
& S^{5}-S^{4}-4 S^{3}-5 S^{2}-2 S-1=0 \\
& S^{5}+S^{4}+4 S^{3}+5 S^{2}+2 S+1=0 \\
& S^{5}+S^{4}+5 S^{3}+4 S^{2}+2 S+1=0 \\
& S^{6}+S^{5}+5 S^{4}+4 S^{3}+2 S^{2}+S=0
\end{aligned}
$$

For each system;
a) Determine the number and probability type of roots at RHS.
b) Examine the absolute stability and comment on the result.

Q4:

[20 Marks]
The open loop transfer function of a control system is;

$$
G(s) H(S)=\frac{k\left(S^{2}-2 S+5\right)}{(S+2)\left(S^{2}+2 S+2\right)}
$$

a) Plot the root locus.
b) Determine the exact value of $\boldsymbol{K}_{\text {cr }}$ and $\boldsymbol{\omega}_{n}$.
c) What is the condition value of \boldsymbol{k} for stable operation?
d) What is the condition value of \boldsymbol{k} for unstable operation?
e) What is the value of \boldsymbol{k} so that, the system does not exhibit oscillation?
f) Determine the open loop gain \boldsymbol{K} that give $\zeta=\sqrt{3} / 2$.

5- For the third order servomechanism shown in the figure. It is required that the steady state error be 0.1 of the final output velocity and the phase margin be 50°. Design the required compensator and find the suitable values of R_{1}, R_{2} and C to satisfy the above condition.

[20 Marks]
6- A. A linear multivariable system is described by the following set of differential equations:

$$
\begin{gathered}
y_{1}^{\bullet \bullet}+y_{1}^{\bullet}+2 y_{1}-2 y_{2}=U_{1} \\
y_{2}^{\bullet}-y_{1}+y_{2}=U_{2}
\end{gathered}
$$

i- Write the state equations of the system in matrix vector form ii- Write the output equation of the system in matrix vector form iii- Find the transfer matrix between output vector and input vector
B. A closed loop multi-input multi-output system has a plant transfer matrix

$$
G_{p}(s)=\left[\begin{array}{cc}
\frac{1}{2 s+1} & 0 \\
1 & \frac{1}{s+1}
\end{array}\right]
$$

Determine the transfer matrix of the series compensator such that the closed loop matrix is:

$$
G_{c . L}(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \\
0 & \frac{1}{5 s+1}
\end{array}\right]
$$

C. Consider the linear system whose Transfer function

$$
\frac{Y(s)}{U(s)}=\frac{S+Z_{1}}{S^{2}+3 S+2}
$$

Determine the values of the parameter Z_{1}
For which the system is both state Controllable and observable

